12 research outputs found

    Adaptive Control of Systems with Quantization and Time Delays

    Get PDF
    This thesis addresses problems relating to tracking control of nonlinear systems in the presence of quantization and time delays. Motivated by the importance in areas such as networked control systems (NCSs) and digital systems, where the use of a communication network in NCS introduces several constraints to the control system, such as the occurrence of quantization and time delays. Quantization and time delays are of both practical and theoretical importance, and the study of systems where these issues arises is thus of great importance. If the system also has parameters that vary or are uncertain, this will make the control problem more complicated. Adaptive control is one tool to handle such system uncertainty. In this thesis, adaptive backstepping control schemes are proposed to handle uncertainties in the system, and to reduce the effects of quantization. Different control problems are considered where quantization is introduced in the control loop, either at the input, the state or both the input and the state. The quantization introduces difficulties in the controller design and stability analysis due to the limited information and nonlinear characteristics, such as discontinuous phenomena. In the thesis, it is analytically shown how the choice of quantization level affects the tracking performance, and how the stability of the closed-loop system equilibrium can be achieved by choosing proper design parameters. In addition, a predictor feedback control scheme is proposed to compensate for a time delay in the system, where the inputs are quantized at the same time. Experiments on a 2-degrees of freedom (DOF) helicopter system demonstrate the different developed control schemes.publishedVersio

    Adaptive Backstepping Attitude Control of a Rigid Body with State Quantization

    Get PDF
    Author's accepted manuscript© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the attitude tracking control problem of a rigid body is investigated where the states are quantized. An adaptive backstepping based control scheme is developed and a new approach to stability analysis is developed by constructing a new compensation scheme for the effects of the vector state quantization. It is shown that all closed-loop signals are ensured uniformly bounded and the tracking errors converge to a compact set containing the origin. Experiments on a 2 degrees-of-freedom helicopter system illustrate the proposed control scheme.acceptedVersio

    Adaptive Quantized Control of Offshore Underactuated Cranes with Uncertainty

    Get PDF
    Author's accepted manuscript.© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.acceptedVersionPaid open acces

    Adaptive Backstepping Control of a 2-DOF Helicopter System with Uniform Quantized Inputs

    Get PDF
    Author's accepted manuscript© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a new adaptive controller for a 2-Degree of Freedom (DOF) helicopter system in the presence of input quantization. The inputs are quantized by uniform quantizers. A nonlinear mathematical model is derived for the 2-DOF helicopter system based on Euler-Lagrange equations, where the system parameters and the control coefficients are uncertain. A new adaptive control algorithm is developed by using backstepping technique to track the pitch and yaw position references independently. Only quantized input signals are used in the system which reduces communication rate and cost. It is shown that not only the ultimate stability is guaranteed by the proposed controller, but also the designers can tune the design parameters in an explicit way to obtain the required closed loop behavior. Experiments are carried out on the Quanser helicopter system to validate the effectiveness, robustness and control capability of the proposed scheme.acceptedVersio

    Adaptive quantized control of uncertain nonlinear rigid body systems

    Get PDF
    This paper investigates the attitude tracking control problem for uncertain nonlinear rigid body systems, where both inputs and states are quantized. It is common in networked control systems that sensor and control signals are quantized before they are transmitted via a communication network. An adaptive backstepping control algorithm is developed for a class of uncertain multiple-input multiple-output (MIMO) systems where a class of sector bounded quantizers is considered. It is shown that all the closed-loop signals are ensured uniformly bounded and tracking is achieved. Further, the tracking errors are shown to converge towards a compact set containing the origin and the set can be made small by the choice of the quantization parameters and the control parameters. For illustration of the proposed control scheme, experiments were conducted on a 2 degrees-of-freedom (DOF) helicopter system.publishedVersio

    Adaptive Backstepping Control of a 2-DOF Helicopter System in the Presence of Quantization

    Get PDF
    Author's accepted manuscript.© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper studies the attitude tracking control for an uncertain 2-degrees of freedom helicopter system where the inputs and the states are quantized. An adaptive backstepping based control scheme is proposed to handle the effect of quantization for tracking of reference angles for pitch and yaw. All closed-loop signals are ensured uniformly bounded and the tracking errors will converge to a compact set containing the origin. Experiments on the helicopter system illustrate the proposed control scheme.acceptedVersio

    Attitude Control of a 2-DOF Helicopter System with Input Quantization and Delay

    Get PDF
    Author's accepted manuscript© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper the attitude tracking control problem of a 2 degrees-of-freedom helicopter system with network induced constraints is studied. A predictor feedback control law is developed to compensate a known delay in the communication, where the inputs are quantized before transmitted over the network. Stability of the closed-loop system is established, where tracking is achieved with bounded tracking errors due to the network issues. The developed predictor-based controller is experimentally tested on the helicopter system, where we demonstrate that tracking is achieved in presence of both input delay and quantization.acceptedVersio

    Adaptive Backstepping Control of Quanser 2DOF Helicopter : Theory and Experiments

    No full text
    Master's thesis Mechatronics MAS500 - University of Agder 201

    Adaptive Attitude Control of a Rigid Body with Input and Output Quantization

    No full text
    In this paper, the adaptive attitude tracking the problem of a rigid body is investigated where the input and output are transmitted via a network. To reduce the communication burden in a network, a quantizer is introduced in both uplink and downlink communication channels. An adaptive backstepping-based control scheme is developed for a class of multiple-input and multiple-output (MIMO) rigid body systems. The proposed control algorithm can overcome the difficulty to proceed with the recursive design of virtual controls with quantized output vector and a new approach to stability analysis is developed by constructing a new compensation scheme for the effects of the vector output quantization and input quantization. It is shown that all closed-loop signals are ensured uniformly bounded and the tracking errors converge to a compact set containing the origin. Experiments on a 2 degrees-of-freedom helicopter system illustrate the effectiveness of the proposed control scheme.acceptedVersio

    Adaptive Attitude Control of a Rigid Body with Input and Output Quantization

    No full text
    In this paper, the adaptive attitude tracking the problem of a rigid body is investigated where the input and output are transmitted via a network. To reduce the communication burden in a network, a quantizer is introduced in both uplink and downlink communication channels. An adaptive backstepping-based control scheme is developed for a class of multiple-input and multiple-output (MIMO) rigid body systems. The proposed control algorithm can overcome the difficulty to proceed with the recursive design of virtual controls with quantized output vector and a new approach to stability analysis is developed by constructing a new compensation scheme for the effects of the vector output quantization and input quantization. It is shown that all closed-loop signals are ensured uniformly bounded and the tracking errors converge to a compact set containing the origin. Experiments on a 2 degrees-of-freedom helicopter system illustrate the effectiveness of the proposed control scheme
    corecore